The Receptor-Bound Guanylyl Cyclase DAF-11 Is the Mediator of Hydrogen Peroxide-Induced Cgmp Increase in Caenorhabditis elegans

نویسندگان

  • Ulrike Beckert
  • Wen Yih Aw
  • Heike Burhenne
  • Lisa Försterling
  • Volkhard Kaever
  • Lisa Timmons
  • Roland Seifert
چکیده

Adenosine 3', 5'-cyclic monophosphate (cAMP) and guanosine 3', 5'-cyclic monophosphate (cGMP) are well-studied second messengers that transmit extracellular signals into mammalian cells, with conserved functions in various other species such as Caenorhabditis elegans (C. elegans). cAMP is generated by adenylyl cyclases, and cGMP is generated by guanylyl cyclases, respectively. Studies using C. elegans have revealed additional roles for cGMP signaling in lifespan extension. For example, mutants lacking the function of a specific receptor-bound guanylyl cyclase, DAF-11, have an increased life expectancy. While the daf-11 phenotype has been attributed to reductions in intracellular cGMP concentrations, the actual content of cyclic nucleotides has not been biochemically determined in this system. Similar assumptions were made in studies using phosphodiesterase loss-of-function mutants or using adenylyl cyclase overexpressing mutants. In the present study, cyclic nucleotide regulation in C. elegans was studied by establishing a special nematode protocol for the simultaneous detection and quantitation of cyclic nucleotides. We also examined the influence of reactive oxygen species (ROS) on cyclic nucleotide metabolism and lifespan in C. elegans using highly specific HPLC-coupled tandem mass-spectrometry and behavioral assays. Here, we show that the relation between cGMP and survival is more complex than previously appreciated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans.

Caenorhabditis elegans daf-11 and daf-21 mutants share defects in specific chemosensory responses mediated by several classes of sensory neurons, indicating that these two genes have closely related functions in an assortment of chemosensory pathways. We report that daf-11 encodes one of a large family of C. elegans transmembrane guanylyl cyclases (TM-GCs). The cyclic GMP analogue 8-bromo-cGMP ...

متن کامل

Localization of a Guanylyl Cyclase to Chemosensory Cilia Requires the Novel Ciliary MYND Domain Protein DAF-25

In harsh conditions, Caenorhabditis elegans arrests development to enter a non-aging, resistant diapause state called the dauer larva. Olfactory sensation modulates the TGF-β and insulin signaling pathways to control this developmental decision. Four mutant alleles of daf-25 (abnormal DAuer Formation) were isolated from screens for mutants exhibiting constitutive dauer formation and found to be...

متن کامل

The cloning of a Caenorhabditis elegans guanylyl cyclase and the construction of a ligand-sensitive mammalian/nematode chimeric receptor.

Substantial guanylyl cyclase activity was detected in membrane fractions prepared from Caenorhabditis elegans (100 pmol cGMP/min/mg at 20 degrees C or 500 pmol cGMP/min/mg at 37 degrees C), suggesting the potential existence of orphan cyclase receptors in the nematode. Using degenerate primers, a cDNA clone encoding a putative membrane form of the enzyme (GCY-X1) was obtained. The apparent cycl...

متن کامل

Tocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans

Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...

متن کامل

Changes in cGMP Levels Affect the Localization of EGL-4 in AWC in Caenorhabditis elegans

The Protein Kinase G, EGL-4, is required within the C. elegans AWC sensory neurons to promote olfactory adaptation. After prolonged stimulation of these neurons, EGL-4 translocates from the cytosol to the nuclei of the AWC. This nuclear translocation event is both necessary and sufficient for adaptation of the AWC neuron to odor. A cGMP binding motif within EGL-4 and the Gα protein ODR-3 are bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013